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Abstract	

This study applies deep learning neural networks to the problem of identifying crop and weed stem origin 

points in images. An autonomous weeding robot drives through a field, taking overhead images as it 

drives over the crop row. A sample of images, with weed and crop labels added by an operator, is used to 

train a neural network.  The trained neural network determines the locations of weed stem emergence 

points, then a mechanical picking arm travels to the location of the weed and pulls it from the ground. The 

sequential nature of the image data over time raises the question of whether learning sequential features in 

addition to local features of the data could improve weed classification. This thesis offers an investigation 

into the utility of convolutional long short-term memory layers for classifying crop and weed stem origins 

from a sequence of two images and introduces a novel weed/crop confusion matrix for evaluating model 

performance.  
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1 Introduction	

1.1 Motivation	

Weeds are a common problem in farming.  They reduce crop productivity and thus the profitability of 

farms. Weeding requires costly human labor or environmentally harmful herbicides. An alternative is to 

have a robot autonomously drive through a field of crops identifying weeds and removing them, requiring 

no human labor or chemicals. Nexus Robotics developed such a robot, pictured in Figure 1.1. 

 

 

Figure 1.1: Nexus Robotics autonomous weeding robot “R2-WEED2”. [1] 

 

The robot’s computer vision system identifies stem emergence points from images captured by 

two high-resolution cameras mounted on the robot. One camera is mounted on the base frame of the robot 

and takes overhead pictures of the crop row. The other is attached to a picking arm with a mechanical 

gripper on the end, used to pull the weeds once they are identified. Each of the cameras takes images at a 

predetermined rate as the robot drives, feeding the overhead images to a neural network which finds the 
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locations of the weed stem emergence points. Once the emergence point of a weed is successfully 

identified, the robot can deploy the picking arm and pull the weed, then move on to find the next 

candidate point for removal. Accurate discrimination between weeds and crops, in addition to the 

identification of the precise locations where weed stems emerge from the soil, is critical to the weeding 

task.  

From a machine learning perspective, this application is a supervised machine learning problem. 

Prior to this research, a convolutional neural network (CNN) was the supervised learning algorithm.  The 

CNN is trained to identify weed and crop stems in a sequence of images from the robot, where each pixel 

is labeled weed stem, crop stem, or background. The training uses one image as input and its 

corresponding label image is the target output.  

This vision system identifies weeds at each time step independently.  That is, each image is fed 

through the network to produce a separate output. The sequential nature of the image data over time raises 

the question of whether learning sequential features in addition to local features of the data could improve 

weed classification.  

The utility of image sequences over time in attempting to identify weeds and their emergence 

points is of particular interest to the present study. Three models are trained against a dataset of hand-

labeled carrot crop imagery: a fully convolutional encoder-decoder network (CNN), a hybrid CNN-

convolutional long short-term memory (ConvLSTM) network and a full ConvLSTM network. The hybrid 

CNN-ConvLSTM and full ConvLSTM networks each accept a sequence of two images and output the 

pixelwise segmentation of the second image in the sequence while the CNN accepts only one image at a 

time.  

The study presents a novel weed/crop confusion matrix algorithm to evaluate model performance. 

The algorithm counts the number of weeds and crops found in each of the predicted images and target 

images to determine weed and crop detection rates as well as rates of incorrect predictions.  

The remainder of the thesis is organized as follows: Chapter 2 provides preliminary information 

on supervised learning, shallow neural networks, and deep neural networks, including CNN, RNN, LSTM, 
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and ConvLSTM architectures. Chapter 3 summarizes other academic work relevant to the present study. 

Chapter 4 overviews the methods used including descriptions of the data, model architectures, and 

evaluation metrics. Chapter 5 discusses the performance of each model, including the novel performance 

measure based on the weed/crop confusion matrix. Other comparisons are made, including time to train 

the models and generate predictions. Chapter 6 summarizes the thesis and discusses directions for future 

research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

4 
 

2 Background	

This chapter provides a brief description of relevant information to the study. Topics include supervised 

learning, artificial neural networks – both shallow and deep, including CNN, RNN, LSTM, and 

ConvLSTM, and encoder-decoder neural network architectures. 

2.1 Supervised	Learning	

Supervised learning is a subset of machine learning in which an algorithm is used to learn a mapping f, 

from each element in an input set X to an element in an output set Y such that Y = f(X). Training data must 

contain both an X and a Y set for this mapping to be learned. If the desired output of the function consists 

of one or more continuous variables, this is called a regression problem. Otherwise, if the aim is to map 

an input vector to one of a finite number of discrete categories, this is a classification problem. [2]. 

2.2 Artificial	Neural	Networks	

The human brain is composed of billions of interconnected neurons.  Using a large number of these 

simple processing units, the brain is able to perform extremely complex tasks. Artificial neural networks 

(ANNs), inspired by biological neural networks, are based on a collection of artificial neurons. Figure 2.1 

shows a mathematical model of a biological neuron, called an artificial neuron.  Artificial neurons are 

indexed by k, with a single neuron displayed here. 
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Figure 2.1: McCulloch-Pitts' artificial neuron k. [3] 

 

According to [3], the three basic elements of the neural model are:  

 

(1) A set of synapses, or connecting links, each characterized by a weight. Specifically, a signal 𝑥! at 

the input of synapse 𝑗 connected to neuron 𝑘 is multiplied by the synaptic weight 𝑤"!. 

(2) An adder for summing input signal weighted by respective synaptic strengths of the neuron; the 

operation described here constitute a linear combiner. 

(3) An activation function for limiting the amplitude of the output of a neuron. Also traditionally 

called a squashing function, it limits the permissible amplitude range of the output signal to some 

finite value.  

The output of the neuron in Figure 1 may be represented by the equation 

 𝑦" = 	j()(𝑤"!𝑥!

#

!$%

) +	𝑏"), (2.1) 

where 𝑏" is a bias term and j() is an activation function. The lines connecting each input 𝑥! ∈ 	𝑋 and its 

assigned weight 𝑤"! represent the product of the two terms 𝑥! and 𝑤"!. The products of each 𝑥! ∈ 	𝑋 and 

its assigned weight 𝑤"! are summed, shown as the summing junction in Figure 2.1. The sum of the 
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products of inputs and weights are then passed through an activation function, such as sigmoid or 

Rectified Linear Unit (ReLU), described later in Section 2.2.2. 

The sigmoid activation function is given by 

j(𝑎) = 	
1

1 + exp	(−𝑎)
= 	𝑠(𝑎). 

Letting 𝑥& = 1 and 𝑏%" = 𝑤"&, (2.1) may be written as 𝑦 = 𝑓(∑ 𝑤"!𝑥!#
!$% ). 

This simplified form is illustrated in Figure 2.2. 

 

 

Figure 2.2: Simplified artificial neuron. [4] 

 

 

Figure 2.3: ANN with 3 inputs, 1 hidden layer containing 4 hidden nodes and 1 output. [5] 

 

Figure 2.3 shows a configuration of neurons in a fully connected artificial neural network with a 

single hidden layer. The network accepts three inputs, 𝑥%, 𝑥', and 𝑥(, represented by the first column 

containing three nodes (circles). The weights for the network are represented by the edges between each 

node. The second column of circles represents a hidden layer of neurons, where in each neuron, the 

products of the inputs and the weights are summed then passed through an activation function. Each of 
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the outputs from the hidden layer are then multiplied by their respective weights, summed, then passed 

through an activation function to get the output of the entire network.  

The output of the network shown in Figure 2.3 may be represented as 

𝑦" = 	j()𝑤"j()𝑤"!𝑥!

#

!$&

))
)

"$&

. 

Here, the same activation function is used in the hidden layer as well as the output layer. In general, a 

network may use different activation functions for different layers, depending on the input to the layer 

and the desired output. 

2.2.1 Deep	Learning	

The human brain is composed of billions of interconnected neurons.  Using a large number of these 

simple processing units the brain is able to perform extremely complex tasks. With multiple levels of 

processing, it is believed that each level learns features or representations at increasing levels of 

abstraction. [6]. 

The human brain uses many levels of processing, it is believed that each level learns features or 

representations at increasing levels of abstraction. 

 

 

Figure 2.4: Fully connected ANN with 6 inputs, 1 output, and 2 hidden layers. The first has 4 nodes 
and the second has 3 nodes. [5] 
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Figure 2.4 shows a fully connected deep artificial neural network with 2 hidden layers. Similar to 

the network in Figure 2.2, the first column of circles represent the inputs to the network, the edges 

represent weights, the circles in the second, third, fourth, and fifth columns represent the operations of 

taking linear combinations of the inputs to the nodes then passing these values to activation functions. 

2.2.2 Activation	Functions	

The descriptions of sigmoid, softmax and ReLU activation functions below are based on [7]. 

Sigmoid	Function	

A sigmoid function is a mathematical function which possesses a characteristic “S”-shaped curved, 

known as a sigmoid curve. A common example of a sigmoid function is the logistic function, shown in 

Figure 2.5. 

 

Figure 2.5: Graph of logistic curve. [8] 

 

The logistic function 𝑆 ∶ 	𝑅% →	𝑅% is defined as 

𝑆(𝑥) =
1

1 +	𝑒*+
. 

It may be used as an activation function in a binary problem where the output of the function is the 

probability the input belongs to a specific class, p(x)=S(x). The probability the input belongs to the other 

class may be found by subtracting p(x) from 1.  
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Softmax	Function	

The softmax function is a generalization of the logistic function for problems where the number of classes 

is greater than 2. The softmax function 𝑠 ∶ 	𝑅, →	𝑅, 	is defined as 	

𝑠(𝑥)- =
𝑒+!

∑ 𝑒+",
!$%

, 

for 𝑖 = 1, . . . , 𝐾 and 𝑥 = (𝑥%, … , 𝑥,) ∈ 	𝑅,.  The function gives 𝐾 outputs for the 𝐾 classes. Each output 

is bounded between 0 and 1 with the 𝐾 outputs summing to 1. When the number of classes 𝐾 = 2, the 

softmax function is equivalent to the logistic function. 

Rectified	Linear	Unit	Function	

The fact that the gradients of some activation functions are sharp in specific directions and change slowly 

or are even zero in some other directions creates a problem for algorithms for learning parameters of the 

model. How the gradient flows within the network is a common problem for most learning-based systems. 

The Rectified Linear Unit (ReLU) activation function performs a threshold operation where input 

values less than zero are set to zero. Thus ReLU is defined by the function 

𝑓(𝑥) = C𝑥, 𝑖𝑓	𝑥 ≥ 0
0,										𝑖𝑓	𝑥 < 0.		 

The function gets its name from its ability to rectify the values of negative inputs by forcing the values to 

be zero. ReLU functions are popular because they speed up network training. [9] 

 

 

Figure 2.6: Graph of ReLU function. [9] 
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2.2.3 Network	Training	

The standard method for learning weights in a neural network is backpropagation [3]. A loss function 

evaluates a network’s error using the output predicted by the model and the target output. The 

backpropagation algorithm seeks to minimize this error or “loss” as a function of the weights. To do this, 

the derivative of the loss function is taken with respect to each of the weights.  Starting from the output 

layer of the network, the error is backpropagated through each layer to the input layer. 

Some popular loss functions include Mean Squared Error (for regression problems) or Cross-

Entropy (for classification problems). Section 4.2.2 provides more detail and examples of loss functions. 

2.2.4 Regularization/Dropout	

The description of regularization and dropout is based on [10]. 

Overfitting refers to the memorization of training data when the learned network weights produce 

output unrealistically close to the target training data. When the model is given new previously unseen 

data, the predicted output will be much farther from the target output. This is known as a large 

generalization error. Training a model for too long or using a small dataset increases the risk of overfitting 

the model to the training data, creating errors in generalization when the model is given previously unseen 

data. Regularization techniques constrain the network weights, helping to prevent overfitting.  Dropout is 

one regularization technique. 

The term “dropout” refers to dropping out network units, that is temporarily removing the units 

along with its incoming and outgoing connections. The units that are dropped are selected at random and 

may be hidden or visible. The probability of each unit in a layer being dropped at any iteration is 

controlled by a hyperparameter set by the user. During training iterations when a hidden unit is dropped, 

the learning algorithm does not update the corresponding weights. Figure 2.7 illustrates an example of a 

standard neural network before and after dropout is applied. In Figure 2.7 the probability each unit is 

dropped might have been 0.5. We see a random realization of 15 Bernoulli trials with p=0.5, giving in 

this case 7 out of 15 units dropped.  
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Figure 2.7: Example of standard neural network with 2 hidden layers (left) and example of a 
thinned network produced by applying dropout to the network on the left where the units with “X” 
have been dropped (right). [10] 

 

Later in Chapter 4, the application of dropout will be represented by dropout layers, specifying 

where in the network dropout is applied. 

2.3 Image	Classification	

Pixels in an image may be represented as a matrix of size (height, width) with entries ranging between 0 

and 255. A greyscale image has one channel, where a pixel value of 0 represents black and a value of 255 

represents white. A colored image has three channels, red, green and blue, stacked on top of each other, 

giving the matrix a third dimension.   

The image classification problem is the task of assigning an input image one label from a fixed 

set of categories. A pixel-wise image classification problem assigns a label to each pixel as opposed to 

having only one label for the entire image.  In pixel-wise image classification, the number of outputs of 

the network would equal the number of pixels in the image. 

The pixel-wise image classification is also referred to as semantic segmentation. Figure 2.8 shows 

an example of an image and a semantic segmentation of the image with 8 class labels, namely, road, pole, 

sidewalk, vegetation, building, vehicle, fence, and unlabeled. Each of the pixels in the original image is 
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mapped to the color corresponding to the appropriate label in the segmentation image. The key of which 

color represents which label is found below the segmentation image. 

 

 

Figure 2.8: Semantic segmentation example. [11] 

 

2.4 Convolutional	Neural	Networks	

The description of Convolutional Neural Networks, convolution, and pooling is based on [12, 14]. 

A Convolutional Neural Network (CNN) is a type of neural network found to be very effective in 

areas such as image recognition and classification. A basic CNN architecture is composed of 

convolutional layers, activation functions, pooling or subsampling, and a fully connected layer at the end 

of the network for classification.   
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2.4.1 Convolution	

For applications in image recognition or classification, the primary purpose of convolution is to extract 

features from the input image. Image features are learned using small squares of the input data to preserve 

the spatial relationship between pixels. 

In a convolutional layer, a small matrix, called a ‘filter’ or ‘kernel’, slides over the input matrix 

shifting its position a specified number of pixels each time. At each position, element-wise multiplication 

between the two matrices is performed, and the products are summed to produce an integer that is a single 

element in the output matrix. Figure 2.9 gives an example of a convolution with a 3x3 kernel. 

 

 

Figure 2.9: Example of convolution with 3x3 kernel. [13] 

 

The output matrix of a convolution is called the ‘convolved feature’ or ‘feature map’. The filters 

act as feature detectors from the original input image.  Different values in the filter matrix produce 

different feature maps of the same image.  The values in the filter matrix are weights of the network, and 

so are learned during training.  With more filters, the network will extract more image features, enabling 
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the network to better recognize patterns in unseen images. Table 2.1 shows how different filter weights 

can extract different features from an image. 

 

 

Table 2.1: Different filters and corresponding output images. [12] 

 

The size of the feature map depends on three parameters; depth, stride, and zero padding.  Depth 

is the number of kernels used. Stride is the number of pixels the kernel is slid over the input image 

between computations. Zero padding is the addition of zero cells around the border of the input image so 

that the filter may be applied to the pixels along the border. 
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The convolution example in Figure 2.9 uses one 3x3 kernel so the depth of the convolution is 1. 

The example uses zero padding of one pixel along both the vertical and horizontal dimensions of the 

feature map. The example may use a stride value of 1 although it is not explicitly stated. A stride value of 

1 would correspond to moving the kernel one cell to the right, covering the 3x3 square with 0, 1, 5 along 

the top and 4, 1, 0 along the bottom. 

2.4.2 Pooling	

In addition to convolution, pooling operations are another essential part of CNNs. Pooling 

operations are down-sampling functions which summarize subregions to reduce the size of feature maps. 

These subregions are usually non-overlapping. Some examples of potential pooling functions are taking 

the average (average pooling) or taking the maximum (max pooling) of the values in each subregion.  

Similar to convolution, pooling is done by sliding a window across the input. However, in a 

pooling layer, the values in the window are fed to a predetermined pooling function instead of taking a 

linear combination described by the kernel (as in a convolutional layer). A pooling layer, like a 

convolution layer, depends on the parameters kernel size, stride, and zero padding.  

Suppose a 2x2 max pooling kernel was applied to the image in Figure 2.9 instead of the 

convolution kernel. Using a stride of 2 in each direction and no zero padding, the 8x8 matrix will be 

reduced to a 4x4 matrix. The upper left element of the pooled matrix will be 6, the maximum of the 2x2 

region with entries 3, 0, 2, 6 located in the upper left corner of the input matrix. 

2.5 Recurrent	Neural	Networks	

The description of RNN and LSTM networks in this section is based on [15].  

Humans do not start their thinking from scratch every second.  When reading a sentence, each 

word is understood based on an understanding of previous words. Traditional feedforward neural 

networks do not have this ability to factor in previous time steps of data when making decisions.  
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Recurrent Neural Networks (RNNs) contain temporal loops allowing information to persist from 

one time step to the next. An RNN may be thought of as multiple copies of the same network in 

succession with each network passing a message to the next.  

A visual representation of RNN structure is shown in Figure 2.10. Each block represents a copy 

of neural network, A, that learns sequential features in the form of weights. 𝑥. is the input data at time 

step t, and ℎ. is the hidden state prediction for time step t. Each of the rectangles labeled A are copies of 

the same network, including the same weights. The horizontal arrow connecting the network at time step 𝑖 

with the network at time step 𝑖 + 1 represents a copy of the hidden state output at time step 𝑖, ℎ/, being 

passed to the network for time step 𝑖 + 1. This allows information to persist over time so that sequentially 

time-dependent features of the data may be learned by the network.  

 

 

Figure 2.10: Recurrent layer representation as a chain-like structure of layers. [15] 

 

In the application of the present study,  𝑥. is the image at time step t.  Network A learns local 

features for each image as well as sequential features ℎ..  

In cases where the gap between relevant information and the place it is needed is small, RNNs are 

able to learn past information. But as this gap grows larger, RNNs are no longer able to learn to connect 

the information.  This limitation motivates long short-term memory networks. 
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2.5.1 Long	Short-Term	Memory	Networks	

Long short-term memory networks (LSTMs) are a type of RNN designed to learn long-term dependencies. 

All RNNs have the form of a chain of repeating modules; in a standard RNN this repeating module will 

have a very simple structure, such as a single tanh layer, illustrated in Figure 2.11 below.  This is the same 

structure as Figure 2.10. 

 

 

Figure 2.11: RNN representation as a chain of repeating tanh layers. [15] 

 

LSTMs also have this chain-like structure, but the repeating module is composed of four 

interacting layers; three sigmoid layers and one tanh layer, illustrated in Figure 2.12. 
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Figure 2.12: Chain representation of LSTM layer. [15] 

 

Unlike a traditional RNN, the LSTM has two kinds of output that get passed to the next layer. In 

addition to the hidden state prediction, represented by the lower arrow in Figure 2.12, an LSTM also 

outputs the cell state. The cell state is key to the LSTM. Represented by the horizontal line running 

through the top of the diagram, it acts like a conveyer belt moving information through the entire chain 

with only some minor linear interactions.  

Gates are structures to optionally add or remove information to the cell state. They are composed 

of a sigmoid neural network layer and a pointwise multiplication operation; an LSTM has three of these 

gates. The sigmoid layer outputs a number between 0 and 1, describing how much of each component 

should be let through. 

The first step of an LSTM cell is a sigmoid layer called the forget gate layer, represented in 

Figure 2.12 by the leftmost yellow rectangle near the bottom of the central network. It takes inputs ht-1 

and xt to decide which information to throw away from the cell state of the previous time step, 𝐶.*%	. Cell 

state Ct-1 is the top horizontal arrow feeding into the network. 

The next step is deciding what information to store in the cell state.  This step is composed of two 

parts. The first part is the input gate layer, a sigmoid layer that decides which values to update, 
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represented by the second yellow rectangle. A tanh layer represented by the third rectangle, creates a 

vector of new candidate values, that could be added to the state.  

The old cell state, Ct-1, is updated to the new cell state, Ct, forgetting the information that was 

decided by the first sigmoid and then adding the new candidate values scaled by the output of the second 

sigmoid layer.  

Last is the output gate, a sigmoid layer, represented by the rightmost yellow rectangle.  This layer 

decides which information to output to the next cell.  The cell state is put through a tanh layer to push 

values between -1 and 1. The output of the sigmoid layer and tanh layer are multiplied to produce the 

hidden layer output to feed into the next cell. 

2.6 Convolutional	LSTM	

A convolutional LSTM (ConvLSTM) layer, proposed by [16], possesses a similar recurrent structure as 

the LSTM layer.  Instead of a full connection, a convolution is performed in both the feedforward and 

recurrent connections. This allows the model to learn spatial relationships among pixels in an image while 

also learning patterns among sequential images.  

 

 

Figure 2.13: Representation of ConvLSTM cell. [17] 

 



 
 

20 
 

A ConvLSTM cell is illustrated in Figure 2.13, with inputs 𝐶(.*%), ℎ(.*%) and 𝑥(.), where 𝐶(.*%) 

is the cell state from the previous time step, ℎ(.*%) is the hidden state prediction from the previous time 

step and 𝑥(.) is the image at time step t. The ConvLSTM cell works similarly to an LSTM cell, except 

that the input image and hidden state prediction from the previous time step are convolved rather than 

using a full connection.  

2.7 Encoder-Decoder	Architecture	

An encoder-decoder neural network architecture, also called a “bottleneck network” is used to learn a 

compressed feature representation of the data before reconstructing the features for better generalization. 

The encoder is composed of layers to downsample the input space to obtain a smaller, higher-level 

representation of the data. Pooling layers are one example of a layer used in downsampling. The 

compressed feature vector is then passed to the decoder, a collection of layers which upsample the input 

space to a larger size and lower-level representation. Learning a compressed feature representation of data 

is essential to deep learning. Compressing the features further in a bottleneck architecture requires the 

network to learn to reconstruct the features of the data, resulting in better generalization. An example of 

an encoder-decoder architecture is shown in Figure 2.14.  

 

 

Figure 2.14: Example encoder-decoder network architecture diagram. [18] 
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Upsampling (in 2 dimensions) is done by repeating a specified number of rows and columns of 

the data. A simple example would be to double the rows and columns of a 2x2 matrix to obtain a 4x4 

matrix, shown in Figure 2.15. 

 

Input =  

1 2 

3 4 

 

Output =  

1 1 2 2 

1 1 2 2 

3 3 4 4 

3 3 4 4 

Figure 2.15: Example of upsampling. 
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3 Related	Work	

For the crop weeding application, some previous studies have been published.  Vision-based crop and 

weed classification systems typically use handcrafted features or end-to-end methods based on 

convolutional neural networks (CNN). In [19] an architecture is proposed to simultaneously provide a 

semantic segmentation of the input image as well as the stem locations of weeds and crops. The model 

uses an encoder to extract a compressed and highly informative representation of the image. This encoded 

representation is used as input to two task-specific decoders, one to produce a semantic segmentation of 

the crops and weeds, the other to produce a segmentation of the crop and weed stem regions. This 

approach works well for image segmentation.  Each image is processed independently, so when images 

are taken in sequence over time, temporal information is not used. 

Neural networks capable of using time sequence data are central to this thesis.  The remainder of 

this chapter briefly mentions early research in these areas. 

Long short term memory (LSTM) networks were first introduced in [20] to store information over 

extended time intervals and solve the issues of exploding or vanishing gradients when using back 

propagation through time, or real time recurrent learning with a traditional RNN. This is done by 

truncating the gradient where it does no harm to enforce a constant error flow through internal states of 

special units. Multiplicative gate units learn to open and close access to the constant error flow and allow 

information to persist between time steps. 

Shi et al. proposed the convolutional LSTM (ConvLSTM), using it to build an end-to-end 

trainable model for solving a spatiotemporal forecasting problem in [16]. ConvLSTMs extend the fully 

connected LSTM, containing convolutional structures in both the input-to-state and state-to-state 

transitions. In [16], ConvLSTM layers are stacked in an encoding-forecasting structure to solve the 

precipitation nowcasting problem. 

A comparison of CNN architectures, extended by ConvLSTM layers at different positions for 

semantic segmentation of video sequences is found in [21].  It is found that placing a ConvLSTM layer 
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between the encoder and decoder gives the best results.  Placing one ConvLSTM layer between the 

encoder and decoder and a second ConvLSTM layer at the end of the network before the softmax output 

layer gives the worst results. 
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4 Methods	

4.1 Data	

The study uses a dataset of 300 carrot crop images taken by a camera mounted on the base frame of the 

robot at a rate of 2 Hz as it traverses crop rows. Each image is hand-labeled using a segmentation tool 

allowing a user to place red and green circles of adjustable size at locations of weed and crop stem 

emergence points, respectively, while coloring the rest of the image black. Each overhead image and 

segmentation label image are loaded into each model with a width of 512 pixels, height of 384 pixels, and 

3 channels for red, green, and blue.  Figure 4.1 shows one overhead image and corresponding 

segmentation label image. 

 

 

Figure 4.1: Overhead image of carrot crop (left) and corresponding semantic segmentation (right). 

 

Each of the 196 608 pixels in an input image is assigned a class label of either crop stem, weed 

stem, or background, denoted in the semantic segmentation image with color labels green, red, or black, 

respectively. Each circle must cover the entirety of the stem emergence point; thus the size of a circle 

directly coincides with the size of the region in the image where the crop or weed emerges from the 

ground. 
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Adjacent color labels are arranged in non-overlapping circular configurations of solid color. The 

example in Figure 4.1 is representative of the entire dataset, i.e., these features are common to all of the 

images.  

4.1.1 Data	Preparation	

A channel-wise contrast stretch, illustrated in Figure 4.2, is performed on each image to linearly map the 

pixel values to a specified range and remove extreme outliers from the image. For each channel in the 

image, the 1st percentile of pixel values are all set to 0 while the 99th percentile of pixel values is set to 

255. 

 

 

Figure 4.2: Overhead image of carrot crop (left) and image after contrast stretch applied (right). 

 

After the contrast stretch is applied to the overhead image, pixel values are divided by 255, giving 

values in the range 0 to 1. The label matrix is also divided by 255 then it is rounded so that each pixel 

value is either 0 or 1. This gives each depth-wise pixel vector in the label image a one-hot encoding where 

a value of 1 in the first entry and 0 in the other two entries indicate a weed stem, shown in the label image 

as a red pixel. Similarly, a 1 in the second entry and 0 in the first and third positions indicates a crop stem, 

shown in the label image as a green pixel. A pixel vector containing only zeros indicates “background” 
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(non-crop and non-weed), shown by a black pixel in the label image. The only possible values for pixels 

in the label image are [1, 0, 0], [0, 1, 0], or [0, 0, 0]. 

4.1.2 Train/Test	Sets	

The dataset consists of 300 hand-labeled carrot images taken from an overhead camera mounted on the 

robot where the captured ordering of the images over time is preserved. The first 240 images in the 

dataset create a train set for the vanilla CNN model; the remaining 60 images are used as a test set. There 

was some experimentation with including a validation set to help prevent over-fitting. However, this 

proved to be unproductive for the performance of the model as the images were taken from the training 

set to create a validation set. This gave the model less images to train on, and so the mapping learned was 

less robust and the results were worse than when the data was divided into only two sets. 

Train/Test sets are slightly different for the other two models, due to their architecture.  The 

CNN-ConvLSTM and ConvLSTM models take as input two sequential images stacked. The set of input 

images has dimension (299, 2, 384, 512, 3) where 299 is the number of elements, and each element is 2 

images of size 384 by 512 pixels in each of the 3 channels. This input set is divided similarly to the set for 

the vanilla CNN where 80% of the data is used for the train set and the remaining 20% is used for testing. 

The train set for these models is of size 240, and the test set is of size 59 where the second image of 

sequence i is the first image in sequence i+1 for both the train set and test set.  

4.2 Model	Architectures	and	Experiments	

All models used in this research are implemented in python using the Keras deep learning library with 

TensorFlow 2.0 backend [22]. Training parameters are consistent in all three models with the exception of 

the sizes of the test sets (Section 4.1.2). The models are each created using the Keras Sequential class. 

The popular Adam optimizer [23] is selected for all experiments. The Keras implementation of binary 

cross-entropy (BCE) is applied as a pixel-wise loss function for modifying weights during training of 

each model. The learning rate and number of epochs are fixed (Table 5.1). A 3x3 kernel is used for every 
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convolution in every network and a 2x2 kernel is used for all pooling and upsampling. All 

hyperparameters not explicitly mentioned here or in Chapter 2 are set to default values. 

To train the models in a timely fashion, the Google Cloud Platform (GCP) Compute Engine (CE) 

is used. The virtual machine chosen for this work is the preconfigured Deep Learning VM [24]. The 

compute environment is also configured to use a dedicated NVIDIA Tesla V100 GPU for achieving fast 

tensor math operations under Tensorflow. 

4.2.1 Model	Architectures	

Baseline	“Vanilla”	CNN	Architecture	

A plain “vanilla” convolutional neural network is the most basic model of the study. Used as a foundation 

to build other more complex models, the vanilla CNN serves as a simpler “baseline” model for 

comparison to the other models. The model has an encoder-decoder architecture, accepting one image as 

input and outputting a semantic segmentation of the crop and weed stem emergence points in the image.  

A diagram representing the vanilla CNN architecture is shown in Figure 4.3. The encoder is 

composed of a convolutional layer at the input layer with dropout and ReLU activation, then a 

maxpooling layer, followed by another convolutional layer with ReLU activation and maxpooling layer 

and finally a third convolutional layer with ReLU activation and another maxpooling layer.  

The decoder is composed of a convolutional layer with ReLU activation and upsampling layer, 

then a convolutional layer with dropout and ReLU activation and an upsampling layer, followed by a 

convolutional layer with ReLU activation and an upsampling layer, then another convolutional layer to 

obtain the correct dimensions for the output, and finally a softmax output layer.  
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Figure 4.3: Diagram of vanilla CNN architecture. 

 

Hybrid	CNN-ConvLSTM	model	

The Hybrid ConvLSTM model, created to learn sequential features in the images, takes a sequence of two 

images stacked along the time axis as input, and outputs the label image corresponding to the second 

input image in the sequence. The architecture is similar to the vanilla CNN but with the addition of two 

ConvLSTM layers. The first ConvLSTM layer is placed after the encoder, before the decoder, at the 

bottle neck, or “chokepoint” of the network. The second ConvLSTM layer is placed before the softmax 

output layer at the end of the network. A visual representation of the model is shown in Figure 4.4. 
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Figure 4.4: Diagram of the hybrid CNN-ConvLSTM architecture. 

 

ConvLSTM	model	

Expanding on the use of ConvLSTM layers for learning sequential features, the ConvLSTM model 

architecture replaces each of the convolutional layers in the vanilla CNN with a ConvLSTM with the 

same number of filters. Like the Hybrid CNN-ConvLSTM model, the ConvLSTM model takes a 

sequence of two consecutive images stacked along the time axis as input, and outputs the label image 

corresponding to the second image in the sequence. 



 
 

30 
 

 

Figure 4.5: Diagram of ConvLSTM model architecture. 

 

4.2.2 Evaluating	Error	in	the	Models	

The performance of a classification model is measured using a function of the target output, the set of 

preprocessed label images, denoted 𝑦, and the set of predicted image output from the model, denoted 𝑦I. 

During the training phase, an error function is often called a ‘loss’ or ‘cost’ function and is used 

to update the model weights through backpropagation. Error is used in the testing or ‘feedforward’ phase 

to evaluate the performance of the model once the optimal weights have been fixed. The functions used at 

both of these stages evaluate model error at the level of individual pixels. This section reviews some 

common loss functions.  Near the end of the section a weed crop confusion matrix metric is proposed to 

evaluate error at the level of clusters of pixels of the same class.  

Classification	Accuracy	

One straightforward metric to evaluate model performance at either stage is classification accuracy, the 

ratio of the number of correct predictions to the total number of predictions made. 

classification	accuracy = correct	predictions
total	predictions

.	

Often classification accuracy is presented as a percentage by multiplying the above value by 100.  
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Classification accuracy alone can be misleading if there is an unequal number of observations in 

each class or if there are more than two classes in the dataset. 

Cross	Entropy	

Cross entropy loss measures the performance of a classification model whose output is a probability value 

between 0 and 1. Cross entropy loss increases as the predicted probability differs increasingly from the 

actual label.  Cross entropy is represented by the expression 

 

 − ) 𝑦 log(𝑦I) ,
?@ABBCB

 (4.1) 

where 𝑦 is a binary indicator (0 or 1) for class 𝑐, and 𝑦I is the predicted probability for class 𝑐. 

The most used loss function for image segmentation is a pixel-wise cross entropy loss, where 

each pixel is individually examined by comparing the depth-wise pixel vector of class predictions to the 

corresponding one-hot encoded target vector. Pixel-wise loss is calculated as the log loss, summed over 

all possible classes (4.1). The scoring is repeated over all pixels and averaged. 

Since this loss evaluates the class predictions for each pixel vector individually and then averages 

over all pixels, equal learning is essentially asserted to each pixel in the image. This can be a problem if 

the various classes have unbalanced representation in the image, as training may be dominated by the 

most prevalent class. The class imbalance in the dataset may be counteracted by weighting this loss for 

each output channel.  Although the class representations in the images of this study are significantly 

imbalanced (more background than weed or crop), weighting the classes did not seem to improve 

performance in this application.  

Binary	Cross	Entropy	(BCE)		

In a binary problem, the log loss formula may be simplified to include only two classes, this is known as 

binary cross entropy, given by  
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−(𝑦𝑙𝑜𝑔(𝑦I) + (1 − 𝑦)𝑙𝑜𝑔	(1 − 𝑦I)	), 

 

where 𝑦 is a binary indicator (0 or 1) for class 𝑐, and 𝑦I is the predicted probability for class 𝑐. 

Pixel values of the true label image are either 0 or 1, where a 1 in the red channel [1, 0, 0] 

corresponds to a weed stem origin, a 1 in the green channel [0, 1, 0] corresponds to a crop stem and zeros 

in every channel [0, 0, 0] corresponds to background.  

A binary representation of the problem emerges when viewing each channel of the images 

separately. Each pixel in the red channel of the target image is either 1 or 0, either the pixel is part of a 

weed stem, or it is not. Similarly, the green channel of the target image has only values of 1 or 0, either 

the pixel is part of a crop stem or it is not. The blue channel of each target image is always 0, so the 

channel is ignored by the learning algorithm.  For image data, the blue channel is necessary for displaying 

colored image output. The softmax function in the final layer of each model outputs pixel-wise 

probabilities for each class.  

Each model in the study is trained using binary cross entropy as the loss function. The loss is 

calculated separately for each channel in the images and summed: 

𝐿𝑜𝑠𝑠 = 	−(𝑦D𝑙𝑜𝑔(𝑦ID) + (1 − 𝑦D)𝑙𝑜𝑔	(1 − 𝑦ID)	) 

−(𝑦E𝑙𝑜𝑔(𝑦IE) + (1 − 𝑦E)𝑙𝑜𝑔	(1 − 𝑦IE)	) 

−(𝑦F𝑙𝑜𝑔(𝑦IF) + (1 − 𝑦F)𝑙𝑜𝑔	(1 − 𝑦IF)	), 

 

where 𝑦Dand 𝑦ID are the target and predicted outputs for the red channel, 𝑦E  and 𝑦IE  are the target and 

predicted outputs for the green channel, and 𝑦F and 𝑦IF are the target and predicted outputs for the blue 

channel.  The blue channel does not contribute to the loss, since values are always 0. 

Confusion	Matrix	

The confusion matrix is a technique for summarizing the performance of a classification model in terms 

of predicted and actual class labels. The confusion matrix shows ways a classifier is ‘confused’ when 
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making predictions. The number of correct and incorrect predictions are represented with count values for 

each class to give insight into which kinds of errors are being made. 

For illustration, consider a confusion matrix for a two-class problem.  Assume the classes are 

labelled “positive” and “negative”.  A confusion matrix gives counts of the number of observations in all 

4 possible combinations of actual class and predicted class. Table 2 shows such a confusion matrix.  The 

four counts are often named: true positive (TP) for correctly predicted positive cases, false positive (FP), 

for negative cases predicted as positives, false negative (FN), for positive cases predicted as negatives, 

and true negative (TN) for correctly predicted negative cases. 

 

 

Table 4.1: Binary confusion matrix. [23] 

 

A two-class confusion matrix is useful for calculating many performance measures, including 

recall, precision, accuracy, F-score, and AUC. Although the present study contains a three-class problem, 

only two of the classes are of interest: weed stems and crop stems.  

Weed	Crop	Confusion	Matrix	

The pixelwise error calculated using BCE is suitable for training and testing the network, however such a 

loss is not easily interpreted for the application.  Evaluating error at the stem level using groupings of 

pixels of the same class is informative for the practical application of this study in agricultural robotics. 

The Weed Crop Confusion Matrix is an algorithm designed to evaluate the number of crops and weeds 

correctly and incorrectly identified.  
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The algorithm accepts a segmentation image predicted by the model and the corresponding target 

image. It compares the locations of the crops and weeds in the images and returns a confusion matrix of 

the form of true positive, true negative, false positive and false negative values corresponding to the 

number of correctly predicted (true) weeds, correctly predicted (true) crops, incorrectly predicted (false) 

weeds, and incorrectly predicted (false) crops, respectively.  

A false crop represents a weed that was incorrectly classified as a crop. In the weeding 

application, the robot will not deploy its picking arm to remove such a weed.  The surviving weed 

continues to grow, stealing nutrients from crops. The most dangerous type of error is a false weed, when a 

crop is misclassified as a weed, resulting in a crop being removed by the robot. Metrics based on errors 

for individual plants will be most informative.   

To illustrate how the weed crop confusion matrix algorithm obtains counts such as false crops, 

false weeds, true crops and true weeds, consider a small example.  Figures 4.6 and 4.7 show an 8x8 grid 

of pixels with labels W (weed), C (crop) and “empty cell” (background or soil). 

 

W W  C C  W W 
      W W 
        

W W  C C    
W W  C C    

      W W 
      W W 
   C C    

Figure 4.6: Target image example. 

 

   W W  C C 
      C C 

W W       
W W  C C    

   C C C   
        

W  C    W W 
W  C      

Figure 4.7: Predicted image example. 
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Given Figures 4.6 and 4.7, the algorithm would identify 2 true weeds (left middle and bottom 

right), 1 true crop (middle), 1 false weed (top middle) and 1 false crop (top right).  Additionally, the 

weeds in the top left of Figure 4.6 are labelled as background.  This 1 “false background” case could be 

counted as a false crop, since the error (not picking a weed) is the same. 

The robot’s picking arm would be deployed for each of the 4 predicted weed instances in the 

predicted image. This would result in the removal of the two weeds correctly classified, soil displacement 

in the bottom left corner of the frame and damage to the crop located in the top center of the frame.  

With this intuitive understanding of how crops and weeds would be identified and counted, 

consider a more detailed description of the algorithm.   

First the algorithm breaks the input images into channels to get four matrices: the red channel of 

the target image, the red channel of the predicted image, the green channel of the target image, and the 

green channel of the predicted image. These matrices are then rounded so that each of their entries is 

either equal to 0 or 1. This gives four masks, one for weed stems and one for crop stems in each of the 

images. The weed and crop masks for the target and predicted image examples (Figures 4.6 - 4.7) are 

shown below in Figures 4.8 - 4.11.  

 

1 1     1 1 
      1 1 
        

1 1       
1 1       

      1 1 
      1 1 
        

Figure 4.8: Red channel target image example (target weed mask). 
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   1 1    
        

1 1       
1 1       

        
        

1      1 1 
1        

Figure 4.9: Red channel predicted image example (predicted weed mask). 

 

   1 1    
        
        
   1 1    
   1 1    
        
        
   1 1    

Figure 4.10: Green channel target image example (target crop mask). 

 

      1 1 
      1 1 
        
   1 1    
   1 1 1   
        
  1      
  1      

Figure 4.11: Green channel predicted image example (predicted crop mask). 

 

Products of target and predictions masks give masks for pixels present in both matrices. Figure 

4.12 shows the “true weed” mask, a product of the target weed mask and predicted weed mask. The true 

crop mask of the image examples, a product of the target crop mask and predicted crop mask is given in 

Figure 4.13. The false weed mask, a product of the target crop and predicted weed masks is shown in 

Figure 4.14 and Figure 4.15 shows the false crop mask, a product of the target weed and predicted crop 

mask. 
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1 1       
        
        
      1 1 
        

Figure 4.12: True Weed Mask = Target Weed Mask * Predicted Weed Mask. 

 

        
        
        
   1 1    
   1 1    
        
        
        

Figure 4.13: True Crop Mask = Target Crop Mask * Predicted Crop Mask. 

 

   1 1    
        
        
        
        
        
        
        

Figure 4.14: False Weed Mask = Target Crop Mask * Predicted Weed Mask. 

 

      1 1 
      1 1 
        
        
        
        
        
        

Figure 4.15: False Crop Mask = Target Crop Mask * Predicted Weed Mask. 
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These masks are passed to a function which counts the number of instances by turning the 

semantic segmentation mask into an instance segmentation mask. The algorithm traverses the pixels from 

left to right and top down. When a value of 1 is found, there is a check for other “1” cells in the 8-

neighbour points to ensure that instances are not counted more than once. The function returns an instance 

segmentation of the given mask, with labels starting from 1. Figure 4.16 illustrates the instance 

segmentation for the true weed mask. The confusion matrix values are the maximum valued entries in the 

instance segmentation masks.  

The algorithm would find confusion matrix values True Weed=2, True Crop=1, False Weed=1, 

False Crop=1. Total Weed Instances=4 and Total Crop Instances=3 may be found by giving the target 

images to the semantic to instance segmentation function (instead of the TW/TC/FW/FC masks). The 

count can be used to calculate 𝑊𝑒𝑒𝑑𝑖𝑛𝑔	𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = GHIC	JCCK
GL.A@	JCCK

= '
M
= 0.5. 

 

        
        
        

1 1       
        
        
      2 2 
        

Figure 4.16: True weed instance mask. 

 

Incorrectly predicted weeds and crops in locations labeled background in the target image are not 

of interest as the robot may deploy the picking arm but likely would not pull a crop. Additionally, one 

may apply threshold values for the number of pixels in a predicted weed cluster or for some radius for 

around the center of a predicted crop stem to assist in the prevention of incorrect predictions resulting in 

crop damage.  

Conversely, the robot would not deploy its picking arm for instances of predicted pixels 

incorrectly labeled background at locations of weeds and crops in the target image. The case of a crop 
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stem origin being incorrectly labeled background in the prediction image bears little significance to the 

study since the picking arm would not have been deployed if the crop stem had been correctly identified. 

However, the case of a weed stem origin incorrectly predicted as background (labeled “False Background” 

in Table 4.3) is of interest since the weed would not be removed. These false background instances are 

accounted for in the count of total weed instances in the target images (Total Weed Instances = True 

Weed + False Crop + False Background).    

Below, Table 4.2 illustrates the two-class weed-crop confusion matrix used in the study, where 

background is ignored. Table 4.3 shows a three-class weed-crop-background confusion matrix showing 

all three classes. 

 

 Actual Values 

Predicted Values  Weed Crop 

Weed True Weed False Weed 

Crop False Crop True Crop 

Table 4.2: Weed-crop confusion matrix used in study. 

 

 Actual Values 

Predicted Values  Weed Crop Background 

Weed True Weed False Weed - 

Crop False Crop True Crop - 

Background False Background - True Background 

Table 4.3: Weed-crop-background confusion matrix containing all three classes. 
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5 Results	

5.1 Training	

The training curves of the three models are shown below in Figures 5.1 (CNN), 5.2 (CNN-ConvLSTM), 

and 5.3 (ConvLSTM). These curves show training loss (BCE) as a function of epoch, or iterations of the 

training algorithm.  The rate of convergence between the models is of interest. All other factors being 

equal, a model architecture that enables faster convergence is preferred. Convergence is assessed 

informally by visual inspection of the training curves. 

In Figure 5.1, the vanilla CNN trains less evenly for the first 100 epochs then the loss decreases 

more steadily for the next 300 epochs before converging relatively late in the run. 

 

 

Figure 5.1: Training curve – BCE loss, CNN. 

 

The hybrid CNN-ConvLSTM model trains more slowly than the pure CNN, however the model 

converges about 200 epochs sooner (Figure 5.2). Notice that in the training curves for both models there 

is a similar shallow region creating a ‘bump’ around the 50 epoch mark. After the 50 epoch mark, the 

hybrid model very quickly returns to steep learning whereas the CNN remains more shallow. 
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Figure 5.2: Training curve - BCE loss, CNN-ConvLSTM. 

 

Lastly, the training curve for the pure ConvLSTM model (Figure 5.3) reaches convergence 

quickly and has no interruptions in learning over the first 100 epochs. The characteristic ‘bump’ shown in 

the training curves of the previous two models is not present for the ConvLSTM training, resulting in a 

convergence being reached approximately 300 epochs sooner than the pure CNN and about 100 epochs 

earlier than the hybrid model. 

 

 

Figure 5.3: Training curve – BCE loss, pure ConvLSTM. 
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5.2 Model	Performance	Comparison	

Table 5.1 summarizes the performance of the three models described in Section 4.2.1. The discussion 

refers to the table results by row (row 1 = “Model name”).   

 

 

Table 5.1: Train/ test performance results across the three experimental architectures with fixed 
parameterization. 

 

Crop/	Weed	Stem	Locations	

Row 7 of Table 5.1 indicate pixel-wise BCE loss for each model. The vanilla CNN model provides the 

most accurate results for crop and weed stem locations. For the recurrent architectures, the hybrid model 

outperformed the pure ConvLSTM model in crop location accuracy, however, the pure ConvLSTM was 

superior to the hybrid model in weed location accuracy.  

Train	and	Test	Times		

The model offline (train) and feed-forward (test) times of each model in seconds are shown above in 

Table 5.1 in rows 8 and 9. The CNN has shortest train and test times, and the pure ConvLSTM is has the 
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longest. Given the complexity of each model, it seems sensible that the CNN takes the least amount of 

time, both to train and test, and the pure ConvLSTM takes the longest. 

The training time of each model is not of concern to the weeding task as training is performed 

offline before the robot is deployed.  So for training, more compute resources may be used if necessary.  

The test time of a model must support the actual weeding application. Because the robot takes about two 

images per second as it drives, the rate required of a model to identify weed stem locations is 

approximately 2 Hz or two frames per second so that the robot may complete the weeding task before 

moving on to the next region in the crop row. In row 9 of the table each model meets this speed 

requirement. The pure ConvLSTM is the slowest of the three models with a test time of around 2.4 

seconds for 60 test frames, or about 25 frame predictions per second. 

Weed/	Crop	Detection	

A human-understandable evaluation metric is of considerable interest for the practical application of this 

study. Specifically, the weed/crop confusion matrix metric, detailed in Section 4.2.2. was devised to 

assess the number of weeds removed compared to the number of weeds encountered and the number of 

crops damaged in the process. The statistics true weeds, true crops, false weeds, and false crops, are 

provided in rows 10-13 of Table 5.1. Using these counts, and the total numbers of weed and crop 

instances (rows 14-15), more understandable metrics can be computed: 

Weed	Detection	Rate =
True	Weeds

Total	Weed	Instances
∗ 100, 

Crop	Detection	Rate =
True	Crops

Total	Crop	Instances	*	100
, 

False	Weed	Rate = 	
False	Weeds

Total	Crop	Instances
∗ 100, 

False	Crop	Rate = 	
False	Crops

Total	Weed	Instances
∗ 100. 
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Table 5.2 shows the weed and crop detection rates of the three models along with the false weed rates and 

false crop rates. 

 

 CNN CNN-ConvLSTM ConvLSTM 

Weed Detection Rate (%) 62.3 62.9 65.7 

Crop Detection Rate (%) 69.9 64.3 57.4 

False Weed Rate (%) 1.5 4.7 4.0 

False Crop Rate (%) 12.8 5.4 7.9 

Table 5.2: Model evaluation using true weeds, true crops, false weeds, false crops statistics. 

 

The pure ConvLSTM model returned the most weeds at a rate of 65.7%. The next best weed 

detection rate was the hybrid model with 62.9%. The pure CNN had the lowest weed detection rate, 

62.4%.  

The trade-off for increased weed detection is an increase in the number of crops incorrectly 

classified as weeds or ‘false weeds’, resulting in crop damage. The pure CNN model returns 7 (1.5% of 

all crops) false weeds, the pure ConvLSTM model returns 18 (4.0% of all crops) false weeds, and the 

hybrid model returns the most false weeds, 21 (4.7% of all crops).  

The two proposed architectures have lower crop detection rates than the pure CNN model, which 

correctly identifies the most crops (69.9%). The two temporal models ignore more crops with the hybrid 

model returning a crop detection rate of 64.3%, and the pure ConvLSTM with a crop detection rate of 

57.4%. 

Lastly, ‘false crops’ represents the number of weeds incorrectly classified as crops, which results 

in the weed failing to be removed. The CNN model incorrectly predicts the most with a value 36 (12.8% 

of all weeds) false crops while the two temporal models return considerably lower values for false crops. 

The pure ConvLSTM predicts 22 (7.9% of all weeds) false crops and the hybrid CNN-ConvLSTM model 

only misses 15 weeds (5.4%). 
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The two most important statistics from Table 5.2 are the weed detection rate and the false weed 

rate. The ideal model would detect 100% of the weeds, while finding 0% false weeds. The ConvLSTM 

model has the highest weed detection rate and second lowest percentage of false weeds. The CNN model 

has the lowest percentage of false weeds yet has the worst weed detection rate of the three models. The 

difference in weed detection rates (3.4 percentage points) is slightly larger than the difference between the 

false weeds rates (2.5 percentage points), so one might argue that the ConvLSTM is the best performing 

model. 

Sample	Results	

For each run, a sequence of visual results (Figure 5.4) is output to assist in evaluating a model’s ability to 

correctly identify locations of crop and weed stem origins in the input images. The goal of the study is for 

the predicted images in the second row to be identical to the true label images in the third row. Figure 5.4 

shows the pure Conv-LSTM model can predict fairly reliably the locations of crop and weed stem 

emergence points, with a slight preference for weeds. Notice in the second row and second column there 

is an instance of a false crop, where a weed is incorrectly classified as a crop. Moreover, in columns 3, 4, 

and 5, the crop predictions in close clusters appear as larger green blobs where the stem points are merged 

or even ignored rather than making more precise crop distinctions. In the first column, there is an instance 

of a false weed, where a crop is incorrectly predicted as a weed. This type of error in is probably the most 

serious in a weeding application, as the robot would damage, if not remove, the crop.  
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Figure 5.4: Sample image results. First row shows input images taken by the overhead camera on 
the robot, the second row shows images predicted by the ConvLSTM model and the third row 
shows target images for each input. 
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6 Conclusion	

Three deep neural network architectures were designed then experimentally compared using a dataset of 

300 overhead carrot crop/weed images to investigate the precision of weed-removal under fixed training 

and testing constraints. The utility of sequential images was studied with two of the three model 

architectures. One model, the pure CNN, assumes no temporal information, while the hybrid CNN-

ConvLSTM and the pure LSTM models accept sequences of two images at a time.  The hypothesis was 

that using temporal information could be advantageous in the robot-weeding task. The comparison of 

these models assumes identical train/test sets, similar resource allocations, and no special architectural 

tuning considerations including number of layers, convolutional filters, loss function, optimizer, and other 

associated hyper-parameter values. Both the hybrid and pure ConvLSTM models prove to be useful 

alternatives to the standard CNN model, with the pure ConvLSTM indicating potential as the best 

candidate for further experimentation. The test time of both of the temporal models is within the desired 

range of > 25 frames per second while naturally the pure CNN had the shortest times for training and 

testing. The pure Conv-LSTM, although it has the longest train time, converges quickly and provides the 

best overall weed detection and false crop rates. Interestingly, both the hybrid and pure ConvLSTM 

models have a tendency to focus on weed stem emergence points and ignore crop stems. Both temporal 

models appear to provide additional advantages in training behavior over the pure CNN and provide more 

visually appealing prediction images confirming the evaluation metric results. The pure CNN model 

returns the best false weed detection results by about 2-3% yet also provides the worst results on false 

crop identification with a rate of 13% compared to 5% for the hybrid model and 8% for the pure 

ConvLSTM model. 

There are several possible directions for future research. Recurrent neural network architectures 

often assume that the “distance” between time-steps is uniform. In the robot weeding application, the 

assumption would imply that the robot moves the same physical distance between one image and the next. 

Future work could include incorporating GPS data of the robot’s location at each frame. Adding this 
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information may help the temporal models learn since the current imagery contains inconsistencies due to 

traversing uneven terrain or the robot stopping and recording multiple images of a single location. 

Additional extensions to this study might include using a larger or more robust dataset. For 

example, one may use a dataset of images of the same crop in the same field on a longer run, images of 

the same crop on different fields, images of different crops, or images of crops at different stages of 

development. Training models on such extended data might improve generalization accuracy.  
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